Cours & méthodes

Équations cartésiennes de droites

24

GEOMETRIE

1 Définition

Définition

On appelle équation générale ou **équation cartésienne** d'une droite, une équation de la forme

$$ax + by + c = 0$$

où a et b ne pouvant pas être nuls en même temps.

Podcast 1

Démonstration : Démonstration Fondamentale :

La démonstration proposée en vidéo est importante pour ceux qui suivent bien en maths, qui envisagent la spé maths.

Exemple: *

- 3x + 4y 5 = 0 est une équation cartésienne de droite, de coefficients : a = 3; b = 4 et c = -5.
- Si a=0, alors l'équation est sous la forme : $by+c=0 \iff y=-\frac{c}{b}$ et b ne peut pas être nul lui aussi. C'est une droite horizontale.
- Si b=0, alors l'équation est sous la forme : $ax+c=0 \iff x=-\frac{c}{a}$ et a ne peut pas être nul lui aussi. C'est une droite verticale.

Méthode : Passer d'une forme à une autre.

Soit, dans un repère orthonormé :

- (d_1) la droite d'équation y = -3x + 1
- (d_2) la droite d'équation x = -4.
- (d_3) la droite d'équation 3x + 2y 4 = 0.

Donner une équation cartésienne de (d_1) et (d_2) et une équation réduite de (d_3) .

Correction pdf

Remarque

Une droite admet une infinité d'équation cartésienne.

Exemple

Soit (d): 2x + 3y - 4 = 0 une équation cartésienne d'une droite (d).

On a alors aussi : (d) : 4x + 6y - 8 = 0 en multipliant chaque membre par 2.

et (d): -6x - 9y + 12 = 0 en multipliant chaque membre par -3.

Il n'y a donc pas unicité de l'écriture d'une équation cartésienne, contrairement à une équation réduite.

S'évaluer :

QCM n°1

2 Vecteur directeur et cartésienne.

Propriété : Vecteur directeur d'une droite.

Soit (d) une droite du plan d'équation : (d) : ax + by + c = 0 avec $(a; b) \neq (0; 0)$ Le vecteur $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ est un vecteur directeur de la droite (d)

Podcast 7

Exemple

Soit (d) la droite d'équation (d) : 2x + 3y - 5 = 0 . a = 2 et b = 3 donc (d) admet pour vecteur directeur : $\vec{u} \begin{pmatrix} -3 \\ 2 \end{pmatrix}$

Méthode : Déterminer une équation de droite avec un point et un vecteur directeur.

Il y a deux méthodes possibles. Cet exercice est donc corrigé deux fois.

La première idée est de prendre un point M(x; y) sur la droite (d).

 \overrightarrow{AM} et \overrightarrow{u} seront colinéaires, donc leur déterminant sera nul.

Soit $A(3;-2)$ et $\vec{u} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ respectivement un point et un vecteur d'un plan muni d'un repère orthonormé. Déterminer une équation cartésienne de la droite (d) passant par A et ayant \vec{u} comme vecteur directeur.	Correction

Méthode : Déterminer une équation de droite avec un point et un vecteur directeur.

L'idée de cette deuxième méthode est d'utiliser la propriété du vecteur directeur dans l'équation cartésienne.

Soit A(3;-2) et $\vec{u} \binom{-1}{3}$ respectivement un point et un vecteur d'un plan muni d'un repère orthonormé.

Déterminer une équation cartésienne de la droite (d) passant par A et ayant \vec{u} comme vecteur directeur.

Déterminer une équation cartésienne de droite à partir de deux points.

Méthode : Déterminer une équation cartésienne de droite à partir de deux points.

lci aussi il y a les deux mêmes méthodes. Commençons par celle du déterminant :

Soit A(3;2) et B(1;4) deux points d'un plan muni d'un repère orthonormé. Déterminer une équation cartésienne de la droite (AB)

Correction

 $\textbf{M\'ethode}: \mathsf{D\'eterminer} \ \mathsf{une} \ \mathsf{\'equation} \ \mathsf{cart\'esienne} \ \mathsf{de} \ \mathsf{droite} \ \mathsf{\grave{a}} \ \mathsf{partir} \ \mathsf{de} \ \mathsf{deux} \ \mathsf{points}.$

Utilisons ici la méthode du vecteur directeur :

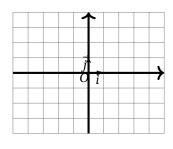
Soit A(3;2) et B(1;4) deux points d'un plan muni d'un repère orthonormé. Déterminer une équation cartésienne de la droite (AB)

Correction

4 Tracer une droite à partir de son équation cartésienne

Méthode : Représenter une droite à partir de son équation cartésienne

Représenter la droite (d) d'équation 3x-2y+5=0 dans ce repère orthonormé.



Correction

S'évaluer

QCM n°2 :

Note :

5 Droites parallèles et droites sécantes

Propriété

Dans un repère orthonormé :

Soit la droite (d) d' équation ax + by + c = 0 et la droite (d') d' équation a'x + b'y + c' = 0 avec les $(a; b) \neq (0; 0)$ et $(a'; b') \neq (0; 0)$.

On a alors:

$$(d) \parallel (d') \iff ab' - a'b = 0$$

Démonstration

La droite (d) d' équation ax + by + c = 0 admet $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ comme vecteur directeur.

De même, la droite (d') d' équation a'x + b'y + c' = 0 admet $\vec{v} \begin{pmatrix} -b' \\ a' \end{pmatrix}$.

Si $(d) \parallel (d')$ alors \vec{u} et \vec{v} sont colinéaires donc $Det(\vec{u}; \vec{v}) = 0$ donc ab' - a'b = 0.

Réciproquement, si ab'-a'b=0 alors $Det(\vec{u};\vec{v})=0$ donc \vec{u} et \vec{v} sont colinéaires et $(d)\parallel(d')$

Méthode

Soit (d_1) la droite d'équation : $3x - 2y + 4 = 0$ et (d_2) la droite d'équation : $-6x + 4y - 1 = 0$. Les droites (d_1) et (d_2) sont-elles parallèles ?	
	Correction

Méthode

Il s'agit de refaire la démonstration, pour s'épargner d'apprendre la propriété précédente par cœur.

Soit (d_1) la droite d'équation : $3x-2y+4=0$ et (d_2) la droite d'équation : $-6x+4y-1=0$. Les droites (d_1) et (d_2) sont-elles parallèles ?	
	Correction