
Trigonométrie

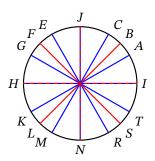
Parcours 1

Parcours 2

Se repérer :

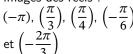
Exercice 1 -

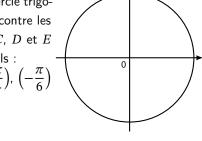
En utilisant le cercle trigonométrique suivant, placer les points A, B, C, D, E et F du cercle $\mathcal C$ images par enroulement de la droite numérique des réels suivants :


- 1) π

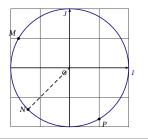
Exercice 4

- 1) On considère le cercle trigonométrique ci-dessous. Associer chacun des nombres à un point du cercle. Les segments rouges partagent le cercle en huit angles de 45°et les bleus partagent le cercle en douze angles de 30°.
- c) $\frac{\pi}{4}$ e) $-\frac{\pi}{2}$ g) $-\frac{\pi}{4}$ d) $\frac{\pi}{6}$ f) $-\frac{\pi}{3}$ h) $-\frac{\pi}{6}$


- b) $\frac{2}{\pi}$

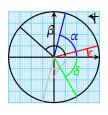

- 2) Déterminer le réel associé aux points suivants compris dans l'intervalle $[0; 2\pi[$;
 - a) A
- b) R
- c) H
- d) L
- 3) Déterminer le réel associé aux points suivants compris dans l'intervalle $]-\pi;\pi]$.
 - a) *K*
- b) *N*
- d) I

Exercice 2


Placer sur le cercle trigonométrique ci-contre les points A, B, C, D et Eimages des réels :

Exercice 3

Déterminer un réel associé à chacun des points I, J, M, N et P.


Cosinus et sinus

Exercice 5 -

On considère ci-dessous, dans le repère (O; I, J), le cercle trigonométrique de rayon 1. Déterminer les valeurs approchées des sinus et cosinus des angles suivants.

Sésamath

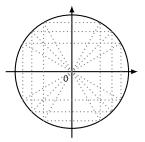
- 1) α
- 6) 30°
- 2) B
- 7) 45°
- 3) γ
- 8) 60°
- 4) δ
- 5) ε

Exercice 6

Déterminer la valeur exacte de :

- 1) $\cos(\pi)$
- 3) $\sin\left(-\frac{\pi}{2}\right)$
- 2) $\sin\left(\frac{\pi}{4}\right)$

Exercice 7


A l'aide du cercle trigonométrique, associer chaque expression en fonction de $\cos x$ ou $\sin x$:

- $\cos(-x)$; $\sin(-x)$
- $cos(x+\pi)$; $sin(x+\pi)$
- $\cos(\pi x)$: $\sin(\pi x)$
- $\cos(x+\frac{\pi}{2})$; $\sin(x+\frac{\pi}{2})$

Exercice 8

A l'aide du cercle trigonométrique, associer chaque expression en fonction de $\cos x$ ou $\sin x$:

- $\cos\left(\frac{3\pi}{4}\right)$
- $\sin\left(\frac{-2\pi}{3}\right)$
- $\cos\left(\frac{5\pi}{6}\right)$
- $\sin\left(\frac{7\pi}{6}\right)$

Exercice 9

Déterminer la valeur exacte de :

- 1) $\cos(\pi)$
- 3) $\sin\left(\frac{2\pi}{3}\right)$
- 2) $\cos\left(\frac{2\pi}{3}\right)$
- 4) $\sin(\pi)$

Exercice 10

Déterminer la valeur exacte de :

- 1) $\sin\left(\frac{-35\pi}{6}\right)$ 3) $\sin\left(\frac{-5\pi}{3}\right)$
- 2) $\cos\left(\frac{-7\pi}{4}\right)$

Exercice 11 -

Soit x un nombre réel tel que $\cos x = \frac{1}{4}$ et $x \in \left[-\frac{\pi}{2} ; 0 \right]$. Calculer $\sin x$.

Exercice 12 - 🖬 -

Soit x un nombre réel tel que $\sin x = \frac{1}{5}$ et $x \in \left[\frac{\pi}{2}; \pi\right]$. Calculer $\cos x$.

Equations - Inéquations

Exercice 13 -

Déterminer dans chaque cas, s'il existe, le nombre réel

- 1) $\sin x = -0.8 \text{ et } x \in \left[-\frac{\pi}{2} ; 0 \right]$
- 2) $\sin x = 1, 2 \text{ et } x \in \left[0; \frac{\pi}{2}\right]$

Exercice 14

Résoudre dans $]-\pi$; $\pi]$ les équations suivantes :

1)
$$\sin x = \frac{\sqrt{3}}{2}$$
. 2) $\cos x = \frac{1}{2}$.

2)
$$\cos x = \frac{1}{2}$$
.

Exercice 15

Résoudre dans] $-\pi$; π] les équations suivantes :

1)
$$\cos x = \frac{\sqrt{3}}{2}$$
. 2) $\sin x = -\frac{1}{2}$.

2)
$$\sin x = -\frac{1}{2}$$

Exercice 16 -

Résoudre dans $[0; 2\pi[$ les équations suivantes :

- 1) $\cos x = 0$.
- 3) $\sin x = -\frac{\sqrt{2}}{2}$.
- 2) $\sin x = 1$.

Exercice 17 -

On considère l'inéquation $\cos x > 0$.

- 1) Représenter sur le cercle trigonométrique les solutions de cette inéquation dans $]-\pi$; π].
- 2) Résoudre cette inéquation dans $]-\pi$; π].

Exercice 18 -

On considère l'inéquation $\sin x \geqslant \frac{\sqrt{2}}{2}$

- 1) Représenter sur le cercle trigonométrique les solutions de cette inéquation dans $]-\pi$; π].
- 2) Résoudre cette inéquation dans $]-\pi$; π]

Sésamath

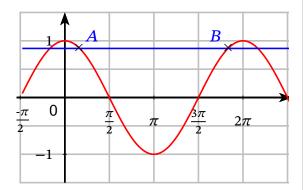
Exercice 19

On considère l'inéquation $\sin x < -\frac{\sqrt{3}}{2}$.

- 1) Représenter sur le cercle trigonométrique les solutions de cette inéquation dans $]-\pi$; π].
- 2) Résoudre cette inéquation dans $]-\pi$; π].

Exercice 20

On considère l'inéquation $\cos x > -\frac{\sqrt{3}}{2}$.

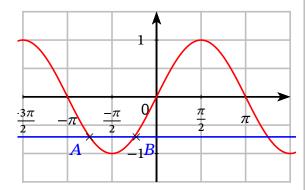

Sésamath

- 1) Représenter sur le cercle trigonométrique les solutions de cette inéquation dans $]-\pi$; π].
- 2) Résoudre cette inéquation dans $]-\pi$; π].

Exercice 21 -

Sur le graphique ci-dessous, on a tracé la courbe de la fonction cos et la droite d'équation $y=\frac{\sqrt{3}}{2}$.

1) Donner les abscisses des points A et B.


- 2) Résoudre dans [0 ; 2π [, l'équation $\cos x = \frac{\sqrt{3}}{2}$.
- 3) Résoudre dans $[0\;;\;2\pi[,\;l'inéquation\;\cos x\leqslant \frac{\sqrt{3}}{2}.$

Ed. Magnard

Exercice 22 -

Sur le graphique ci-dessous, on a tracé la courbe de la fonction sin et la droite d'équation $y=-\frac{\sqrt{2}}{2}$.

1) Donner les abscisses des points A et B.

- 2) Résoudre dans $]-\pi$; π], l'équation $\sin x = -\frac{\sqrt{2}}{2}$.
- 3) Résoudre dans] $-\pi$; π], l'inéquation $\sin x \geqslant -\frac{\sqrt{2}}{2}$.

Ed. Magnard

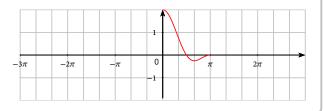
Accès corrections

4 Fonctions trigonométriques

Exercice 23

En faisant virtuellement bouger un point mobile autour du cercle trigonométrique, déterminer le signe de chacune des deux fonctions :

x	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π
$\cos x$					
sin x					


Exercice 24

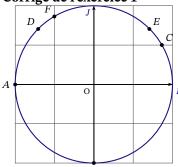
En faisant virtuellement bouger un point mobile autour du cercle trigonométrique, déterminer les variations de chacune des deux fonctions :

x	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π
$\cos x$					
sin x					

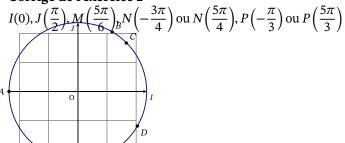
Exercice 25


La fonction représentée ci-dessous est 2π -périodique et paire. Compléter le graphique.

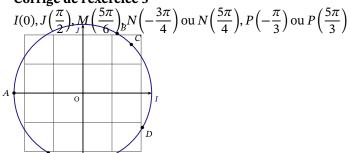
Exercice 26


Soit f la fonction définie sur $\mathbb R$ par $f(x)=1-\cos(x)$. On note $\mathcal C$ sa courbe représentative. On a tracé la partie de $\mathcal C$ sur l'intervalle $[0\ ;\ \pi]$.

- 1) Montrer que f est une fonction paire.
- 2) Montrer que f est périodique de période 2π .
- 3) Compléter la courbe \mathcal{C} .



(Correction)


Corrigé de l'exercice 1

Corrigé de l'exercice 2

Corrigé de l'exercice 3

Corrigé de l'exercice 4

- 1)
- 4) B
- 7) R

- 2) J
- 5) A
- 8) S

- 3) C
- 6) N
- 9) T

- 10)

- 11)

19) 0

Corrigé de l'exercice 5

- 1) $\cos \alpha \approx 0,25$; $\sin \alpha \approx 0,95$
- 2) $\cos \beta \approx -0.75$; $\sin \beta \approx 0.75$
- 3) $\cos \gamma \approx -0.25$; $\sin \gamma \approx -0.95$
- 4) $\cos \delta \approx 0, 5; \sin \delta \approx -0, 85$
- 5) $\cos \varepsilon \approx 0.95$; $\sin \varepsilon \approx 0.25$
- 6) $\cos 30^{\circ} \approx 0.85$; $\sin 30^{\circ} \approx 0.5$
- 7) $\cos 45^{\circ} \approx 0,7; \sin 45^{\circ} \approx 0,7$
- 8) $\cos 60^{\circ} \approx 0, 5; \sin 60^{\circ} \approx 0, 85$

Corrigé de l'exercice 6

Corrigé en ligne.

Corrigé de l'exercice 7

Corrigé en ligne.

Corrigé de l'exercice 8

Corrigé en ligne.

Corrigé de l'exercice 9

Corrigé en ligne.

Corrigé de l'exercice 10

Corrigé en ligne.

Corrigé de l'exercice 11

$$\sin x = -\frac{\sqrt{15}}{4}$$
.
Corrigé de l'exercice 12

$$\cos x = \frac{\sqrt{24}}{5}.$$
Corrigé de l'exercice 13

- 1) $x \simeq -0.93$.
- 2) Il n'existe pas.

Corrigé de l'exercice 14

1)
$$S = \left\{ \frac{\pi}{3}; \frac{2\pi}{3} \right\}$$

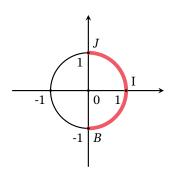
2)
$$S = \left\{ -\frac{\pi}{3}; \frac{\pi}{3} \right\}$$

Corrigé de l'exercice 15

1)
$$S = \left\{ -\frac{\pi}{6}; \frac{\pi}{6} \right\}$$

2)
$$S = \left\{ -\frac{5\pi}{6}; -\frac{\pi}{6} \right\}$$

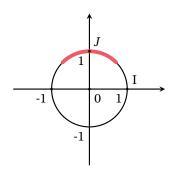
Corrigé de l'exercice 16


$$1) S = \left\{ \frac{\pi}{2}; \frac{3\pi}{2} \right\}$$

2)
$$S = \left\{ \frac{\pi}{2}; \frac{5\pi}{2} \right\}$$

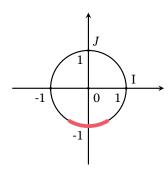
3)
$$S = \left\{ \frac{5\pi}{4}; \frac{7\pi}{4} \right\}$$

Corrigé de l'exercice 17


1)

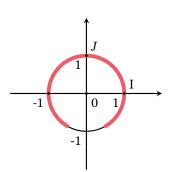
2)
$$S = \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$$

Corrigé de l'exercice 18


1)

$$2) S = \left[\frac{\pi}{4}; \frac{3\pi}{4}\right]$$

Corrigé de l'exercice 19


1)

2)
$$S = \left[-\frac{2\pi}{3}; -\frac{\pi}{3} \right]$$

Corrigé de l'exercice 20

1)

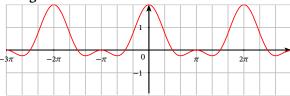
2)
$$S = \left[-\pi; -\frac{2\pi}{3} \right[\cup \left[-\frac{\pi}{3}; \pi \right] \right]$$

Corrigé de l'exercice 21

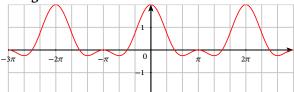
1) Abscisse de $A: \frac{\pi}{6}$. Abscisse de $B: \frac{11\pi}{6}$.

2)
$$S = \left\{ \frac{\pi}{6}; \frac{11\pi}{6} \right\}$$
.

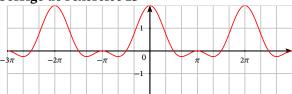
3)
$$S = \left[\frac{\pi}{6}; \frac{11\pi}{6}\right]$$
.


Corrigé de l'exercice 22

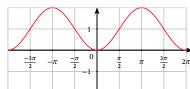
1) Abscisse de
$$A: -\frac{3\pi}{4}$$
.
Abscisse de $B: -\frac{\pi}{4}$.


2)
$$S = \left\{ -\frac{3\pi}{4}; -\frac{\pi}{4} \right\}.$$

3)
$$S = \left] -\pi; -\frac{3\pi}{4} \right] \cup \left] -\frac{\pi}{4}; \pi \right].$$


Corrigé de l'exercice 23

Corrigé de l'exercice 24



Corrigé de l'exercice 25

Corrigé de l'exercice 26

- 1) f est paire car l'ensemble de définition est symétrique par rapport à zéro et que f(-x) = f(x).
- 2) f est périodique de période 2π car pour tout $x \in \mathbb{R}$, $f(x+2\pi)=f(x)$.

3)