Logarithme népérien

Équations, inéquations

Exercice 1 : Propriété exponentielle -

Simplifier au maximum les expressions suivantes.

•
$$A = e^{-4x} \times e^{2x}$$

$$C = \frac{\left(e^{2x}\right)^3}{e^{x+1}}$$

•
$$B = \frac{e^x}{e^{-2x}}$$

$$\bullet \ D = \frac{e^{-x} - e^x}{e^{-x}}$$

Exercice 2: Equations avec exponentielle -

- 1) Quel est le nombre de solutions de l'équation $e^x = k$ avec $k \in \mathbb{R}$?
- 2) Résoudre chacune des équations suivantes :

a)
$$e^x = 0$$
 b) $e^x = 1$ c) $e^x = e$ d) $e^x = \frac{1}{e}$

c)
$$e^x$$

d)
$$e^x =$$

Exercice 3 : Ensemble de définition

Dans chaque cas, déterminer l'ensemble des réels vérifiant les conditions données.

1)
$$2x - 1 > 0$$
 et $-3x + 5 > 0$

2)
$$1 - x > 0$$
 et $x^2 + 3x - 4 < 0$

Exercice 4: Equation simple

Résoudre les équations suivantes.

1)
$$ln(2x - 1) = 0$$

3)
$$2\ln(x) + 1 = -3$$

2)
$$ln(x - e) = 1$$

4)
$$e^{5-2x} = 2$$

Exercice 5 : Inéquation simple

Résoudre les inéquations suivantes.

1)
$$ln(1-x) > 0$$

3)
$$3e^x - 1 < 8$$

$$2) \ln(3-2x) \leqslant 1$$

4)
$$e^{2x} - 3e^x \ge 0$$

Exercice 6 : Inéquations niveau II

Résoudre les inéquations suivantes :

1)
$$\ln\left(\frac{5x+1}{x-2}\right) \le 0$$
 3) $6e^x - 1 \ge 3 - 4e^x$

3)
$$6e^x - 1 \ge 3 - 4e^x$$

2)
$$\ln(x^2 + 2x) - 1 > 0$$
 4) $3e^{2x} - 9e^x < 0$

4)
$$3e^{2x} - 9e^x < 0$$

Exercice 7 : Changement de variables

On veut résoudre l'équation :

$$\ln(x)^2 + 4\ln\left(\frac{1}{x}\right) - 5 = 0 \quad (E).$$

- 1) On pose $X = \ln x$, montrer que l'équation revient alors à résoudre $X^2 - 4X - 5 = 0$ (E').
- 2) Résoudre (E'), en déduire les solutions de (E).

1

Exercice 8 : Equations niveau II

Résoudre les équations suivantes.

1)
$$ln(3x - 6) = ln(4 - x)$$

2)
$$ln(x) + ln(8 - x) = ln(12)$$

3)
$$ln(2x) - ln(x+1) = ln(x-5)$$

Exercice 9 : Inéquations niveau III -

Résoudre les inéquations suivantes.

1)
$$\ln(4x-2) + \ln(5) < 1 - \ln 2$$

2)
$$\ln(5-x) \ge \ln(x-1)$$

3)
$$ln(x-2) + ln(x+2) \ge 0$$

Exercice 10: Inéquations niveau IV -

Résoudre les inéquations suivantes.

1)
$$\ln(x^2 - 4x + 4) - \ln(x - 2) < \ln(8 - x)$$

2)
$$\ln(2x+4) + \ln(1-x) - \ln 2 \ge \ln(-x)$$

Exercice 11: Fonctions -

Soit les fonctions f et g définies sur]2; 4[par

$$f: x \mapsto \ln(3x - 6)$$
 et $g: x \mapsto 2\ln(4 - x)$.

- 1) Les courbes \mathcal{C}_f et $\mathcal{C}_g s'$ interceptent-elles?
- 2) Quelle est la position relative de ces deux courbes?

Propriétés algébriques

Exercice 12 -

Exprimer chacun des nombres suivants sous la forme ln a, avec a un réel strictement positif.

1)
$$A = 2 \ln 5 - \ln 15$$

2)
$$B = -\ln 3 + 4\ln 2 - \ln 5$$

Exercice 13 -

Exprimer chacun des nombres suivants en fonction

1)
$$A = 4 \ln 5 + \ln 25 - 3 \ln \left(\frac{1}{5}\right)$$

2)
$$B = \ln 125 - \frac{1}{2} \ln 25 + \ln \left(\frac{1}{25}\right) - 4 \ln \sqrt{5}$$

Exercice 14

Dans chaque cas déterminer les entiers naturels n tels

1)
$$\left(\frac{2}{3}\right)^n < 10^{-1}$$

1)
$$\left(\frac{2}{3}\right)^n < 10^{-4}$$
 3) $1 - \left(\frac{3}{5}\right)^n \ge 0,999$

2)
$$\left(\frac{9}{7}\right)^n \ge 10^6$$

2)
$$\left(\frac{9}{7}\right)^n \ge 10^6$$
 4) $0,004 > \left(\frac{8}{9}\right)^{2n}$

(Correction)

Corrigé de l'exercice 1

a)
$$A = e^{-2x}$$
 b) $B = e^{3x}$ c) $C = e^{5x-1}$ d) $D = \frac{e^{-x}}{e^{-x}} - \frac{e^x}{e^{-x}} = 1 - e^{2x}$

Corrigé de l'exercice 2

- 1) Si $k \in \mathbb{R}_{-}$, l'équation n'admet aucune solution. Si k > 0, il existe une unique solution.
- 2) Résoudre chacune des équations suivantes :
 - a) $S = \emptyset$
 - b) $S = \{0\}$
 - c) $S = \{1\}$
 - d) $S = \{-1\}$

Corrigé de l'exercice 3

- 1) $2x 1 > 0 \Leftrightarrow x \in I =]\frac{1}{2}; +\infty[\text{ et } -3x + 5 > 0 \Leftrightarrow x \in J =] \infty; \frac{5}{3}[$ Il faut que $x \in I \cap J =]\frac{1}{2}; \frac{5}{3}[$.
- 2) $1 x > 0 \Leftrightarrow x \in I =] \infty; 1[\text{ et } x^2 + 3x 4 < 0 \\ \Leftrightarrow x \in J =] \infty; -4[\cup]1; +\infty[\text{ (calcul de } \Delta = 25; x_1 = -4 \text{ et } x_2 = 1 \text{)}$ Il faut que $x \in] \cap J =] \infty; -4[.$

Corrigé de l'exercice 4

a) Conditions d'existence :

$$x\in \mathrm{I}=]\frac{1}{2};+\infty[$$

$$2x - 1 = 1 \Leftrightarrow x = 1 \in I$$

b) Conditions d'existence :

$$x \in I =]e; +\infty[$$

$$x - e = e \Leftrightarrow x = 2e \in I$$

c)
$$\ln x = -2 \Leftrightarrow x = e^{-2} d$$
) $5 - 2x = \ln 2 \Leftrightarrow x = \frac{5}{2} - \frac{\ln 2}{2}$

Corrigé de l'exercice 5

a) Conditions d'existence :

$$x\in \mathrm{I}=]-\infty;1[$$

$$1 - x > 1$$
 et $x \in I \Leftrightarrow x < 0$ et $x \in I \Leftrightarrow x \in]-\infty;0[$

b) Conditions d'existence :

$$x \in I =]-\infty; \frac{3}{2}[$$

$$3 - 2x \le e \text{ et } x \in I$$

$$\Leftrightarrow x \in \left[\frac{3-e}{2}; +\infty\right[\text{ et } x \in I\right]$$

$$\Leftrightarrow x \in \left[\frac{3-e}{2}; \frac{3}{2}\right[$$

c) $e^x < 3 \Leftrightarrow x < \ln 3 \Leftrightarrow x \in]-\infty; \ln 3[d) e^x (e^x - 3) \ge 0$ or $e^x > 0$ pour tout x, cela revient donc à résoudre :

$$e^x - 3 \ge 0 \Leftrightarrow x \ge \ln 3$$
 donc $x \in [\ln 3; +\infty[$

Corrigé de l'exercice 6

1)
$$S = \left[-\frac{3}{4}; -\frac{1}{5} \right[$$

Donc
$$S =]-\infty; x_1[\cup]x_2; +\infty[$$

2) avec
$$x_1 = \frac{-2 - \sqrt{2 + 2e}}{2}$$
 et $x_2 = \frac{-2 + \sqrt{2 + 2e}}{2}$

3)
$$S = \left[\ln\left(\frac{2}{5}\right); +\infty\right[$$

4)
$$S =] - \infty; \ln 3[$$

Corrigé de l'exercice 7

$$1. (\ln x)^2 - 4 \ln x - 5 = 0$$

Avec
$$X = \ln x$$
, on a $X^2 - 4X - 5 = 0$

2.
$$\Delta = 36 \text{ donc } X_1 = -1 \text{ et } X_2 = 5$$

3. Soit
$$\ln x = -1$$
 et $\ln x = 5$ donc $S = \{e^{-1}; e^{5}\}$

Corrigé de l'exercice 8

- 1) Conditions d'existence : x > 2 et x < 4 donc $x \in I =]2$; 4[3x 6 = 4 x et $x \in I \Leftrightarrow x = \frac{5}{2}$
- 2) Conditions d'existence : $x \in I =]0$; $8[x^2 8x + 12 = 0$ et $x \in I \Leftrightarrow S = \{2, 6\}$
- 3) Conditions d'existence :

$$x \in I =]5; +\infty[$$

$$\ln\left(\frac{2x}{x+1}\right) = \ln(x-5) \text{ et } x \in I$$

$$\Leftrightarrow \frac{2x}{x+1} = x - 5 \text{ et } x \in I$$

$$\Leftrightarrow x^2 + 6x - 5 = 0 \text{ et } x \in I$$

$$\Leftrightarrow x = 3 + \sqrt{14}.$$

Corrigé de l'exercice 9

a) $x > \frac{1}{2}$ et $x \in I \Leftrightarrow x \in]\frac{1}{2}; \frac{1}{2} + \frac{e}{40}[b)$ Conditions d'existence :

$$x \in I =]1; 5[$$

 $5 - x \geqslant x - 1 \text{ et } x \in I$
 $\Leftrightarrow x \leqslant 3 \text{ et } x \in I$
 $\Leftrightarrow x \in]1; 3].$

c) Conditions d'existence :

$$x \in I =]2; +\infty[$$

 $x^2 - 5 \ge 0 \text{ et } x \in I$
 $\Leftrightarrow x \in]\sqrt{5}; +\infty[$

Corrigé de l'exercice 10

a) Conditions d'existence :

$$x^2 - 4x + 4 > 0$$
 et $x - 2 > 0$ et $8 - x > 0$ soit $x \in I =]2; 8[$ $\ln\left(\frac{x^2 - 4x + 4}{x - 2}\right) < \ln(8 - x)$ et $x \in 1$ $\Leftrightarrow \ln(x - 2) < \ln(8 - x)$ et $x \in 1$ car $x^2 - 4x + 2 = (x - 2)^2$ ce qui revient à résoudre $x - 2 < 8 - x$ et $x \in I$. D'où $S =]2; 5[$

Corrigé de l'exercice 11

1. Afin de savoir si les courbes s'interceptent, il s'agit de résoudre

$$f(x) = g(x)$$
 soit $\ln(3x - 6) = 2\ln(4 - x)$
 $\Leftrightarrow \ln(3x - 6) = \ln\left((4 - x)^2\right)$ et $x \in I =]2; 4[$
 $\Leftrightarrow 3x - 6 = (4 - x)^2$ et $x \in I$
 $\Leftrightarrow x^2 - 11x + 22 = 0$ et $x \in I$
 $\Delta = 33 \text{ donc } x_1 = \frac{11 - \sqrt{33}}{2} \in I$ et $x_2 = \frac{11 + \sqrt{33}}{2} \notin I$

Par conséquent, les courbes s'interceptent en un seul point de coordonnées : $(x_1; f(x_1) = g(x_1))$.

2. Pour étudier la position relative de \mathcal{C}_f et \mathcal{C}_g , il faut étudier le signe de f(x)-g(x), ce qui revient à étudier le signe de $3x - 6 - (16 - 8x + x^2)$ soit le signe de $-x^2 + 11x - 22$ sur I.

La courbe \mathcal{C}_f est donc strictement en-dessous de \mathcal{C}_g sur]2; x_1 [et strictement au-dessus sur] x_1 ; 4[.

Corrigé de l'exercice 12

1)
$$A = \ln 25 - \ln 15 = \ln \left(\frac{25}{15}\right) = \ln \left(\frac{5}{3}\right)$$

2)
$$B = \ln\left(\frac{1}{3}\right) + \ln 16 - \ln 5 = \ln\left(\frac{16}{15}\right)$$

Corrigé de l'exercice 13

1)
$$A = 4 \ln 5 + 2 \ln 5 + 3 \ln 5 = 9 \ln 5$$

2)
$$B = 3 \ln 5 - \ln 5 - 2 \ln 5 - 2 \ln 5 = -2 \ln 5$$

Corrigé de l'exercice 14

a)
$$n \ln \left(\frac{2}{3}\right) < \ln \left(10^{-4}\right) \Leftrightarrow n > \frac{\ln \left(10^{-4}\right)}{\ln \left(\frac{2}{3}\right)}$$
 soit $n \ge 23$.

b) $n \ln \left(\frac{9}{7}\right) \ge \ln \left(10^{6}\right) \Leftrightarrow n \ge \frac{\ln \left(10^{6}\right)}{\ln \left(\frac{9}{7}\right)}$
Soit $n \ge 55$

b)
$$n \ln \left(\frac{9}{7}\right) \ge \ln \left(10^6\right) \Leftrightarrow n \ge \frac{\ln \left(10^6\right)}{\ln \left(\frac{9}{7}\right)}$$

Soit $n \ge 55$.