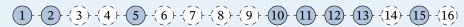
Plan de travai

Vers la forme canonique

2

Ce parcours d'exercices appartient à :

Parcours 1



Parcours 2

Exercice 1 -

- 1) Montrer que pour tout $x \in \mathbb{R}$: $-3x^2 - 30x - 72 = -3(x + 5)^2 + 3$
- 2) Montrer que pour tout $x \in \mathbb{R}$: $x^2 - 4x + 1 = (x - 2)^2 - 3$

Exercice 2

On donne la fonction f définie pour tout $x \in \mathbb{R}$ par $f(x) = x^2 + 6x + 4$.

Développer $(x+3)^2$ et en déduire une écriture f, telle que pour tout $x \in \mathbb{R}$:

$$f(x) = (x+3)^2 + \beta$$

On précisera la valeur de β

Exercice 3

On donne la fonction f définie pour tout $x \in \mathbb{R}$ par $f(x) = x^2 - 10x + 9$.

Déterminer une écriture de f, telle que pour tout $x\in\mathbb{R}$:

$$f(x) = (x - \alpha)^2 + \beta$$

On précisera la valeur de α et de β .

Exercice 4

On donne la fonction f définie pour tout $x \in \mathbb{R}$ par $f(x) = x^2 + 8x + 20$.

Déterminer une écriture de f , telle que pour tout $x\in\mathbb{R}$:

$$f(x) = (x - \alpha)^2 + \beta$$

On précisera la valeur de α et de β .

Exercice 5

On donne une fonction f défini pour tout $x \in \mathbb{R}$ par $f(x) = -3x^2 + 18x - 26$.

Développer $-3(x-3)^2$ et en déduire une écriture f, telle que pour tout $x \in \mathbb{R}$:

$$f(x) = -3(x-3)^2 + \beta$$

On précisera la valeur de β

Exercice 6 -

On donne ci-dessous des expressions sous la forme ax^2+bx où x, a et b sont des réels tels que $a\neq 0$. Faire apparaître l'identité remarquable associée pour transformer l'expression sous la forme :

$$ax^2 + b = a(x - \alpha)^2 + \beta$$

où a et β sont des réels que l'on précisera.

1)
$$5x^2 + 10x$$

2)
$$-3x^2 - 8x$$

Exercice 7 -

On donne la fonction f définie pour tout $x \in \mathbb{R}$ par $f(x) = 4x^2 + 24x + 96$.

Déterminer une écriture de f, telle que pour tout $x\in\mathbb{R}$:

$$f(x) = a(x+3)^2 + \beta$$

où a et β sont des réels que l'on précisera.

Exercice 8

On donne une fonction f défini pour tout $x \in \mathbb{R}$ par $f(x) = -3x^2 + 12x + 5$.

Déterminer une écriture de f, telle que pour tout $x\in\mathbb{R}$:

$$f(x) = -3(x - \alpha)^2 + \beta$$

On précisera la valeur de α et de β .

Exercice 9

On donne une fonction f défini pour tout $x \in \mathbb{R}$ par $f(x) = 4x^2 - 8x + 9.$

Déterminer une écriture de f, telle que pour tout $x \in \mathbb{R}$:

$$f(x) = a(x - \alpha)^2 + \beta$$

On précisera la valeur de α , α et de β .

Exercice 10

On donne une fonction f défini pour tout $x \in \mathbb{R}$ par $f(x) = 4x^2 + 40x + 96.$

Factoriser f(x) par 4 puis en développant $(x + 5)^2$ en déduire une écriture f, telle que pour tout $x \in \mathbb{R}$:

$$f(x) = 4(x+5)^2 + \beta$$

On précisera la valeur de β

Exercice 11

On donne la fonction f définie pour tout $x \in \mathbb{R}$ par $f(x) = 4x^2 + 40x + 96.$

Développer $(x + 3)^2$ et en déduire une écriture de f, telle que pour tout $x \in \mathbb{R}$:

$$f(x) = a(x+3)^2 + \beta$$

où a et β sont des réels que l'on précisera.

Exercice 12

En vous aidant du modèle proposé, transformez les expressions proposées sous la forme

$$ax^2 + b = a(x - \alpha)^2 + \beta$$

où a et β sont des réels que l'on précisera.

$$3x^2+12x = 3(x^2+4x) = 3((x+2)^2-4) = 3(x+2)^2-12$$

1)
$$2x^2 + 4x$$

2)
$$-5x^2 + 30x$$

Exercice 13 -

En appliquant les formules de cours qui déterminent ses coefficients, déterminer la forme canonique de chacune des fonctions P, définie pour tout $x \in \mathbb{R}$ par:

1)
$$P(x) = -x^2 - 8x - 13$$

2)
$$P(x) = -4x^2 + 24x - 35$$

3)
$$P(x) = x^2 + 2x - 4$$

4)
$$P(x) = -4x^2 + 16x - 18$$

Exercice 14 -

En effectuant la démonstration algébrique, déterminer la forme canonique de chacun des fonctions P, définie pour tout $x \in \mathbb{R}$ par :

1)
$$P(x) = -x^2 - 8x - 13$$

2)
$$P(x) = -4x^2 + 24x - 35$$

3)
$$P(x) = x^2 + 2x - 4$$

4)
$$P(x) = -4x^2 + 16x - 18$$

Exercice 15

Résoudre dans \mathbb{R} les équations suivantes en utilisant la forme canonique du polynôme :

1)
$$x^2 - x - 3 = 0$$

3)
$$-x^2 + 5x + 3 = 0$$

2)
$$-3x^2 - 4x - 3 = 0$$
 4) $-2x^2 - 3x - 3 = 0$

4)
$$-2x^2 - 3x - 3 = 0$$

Exercice 16

Résoudre dans \mathbb{R} les équations suivantes en utilisant la forme canonique du polynôme :

1)
$$x^2 - x - 3 = 0$$

1)
$$x^2 - x - 3 = 0$$
 3) $-x^2 + 5x + 3 = 0$

2)
$$-3x^2 - 4x - 3 = 0$$
 4) $-2x^2 - 3x - 3 = 0$

4)
$$-2x^2 - 3x - 3 = 0$$

Lycée Bellevue 1ère spé

(Correction)

Corrigé de l'exercice 1

Il suffit de développer!!

Corrigé de l'exercice 2

$$(x+3)^2 = x^2 + 6x + 9$$

$$f(x) = x^2 + 6x + 4 = \underline{x^2 + 6x + 9} - 5 = (x+3)^2 - 5$$

Corrigé de l'exercice 3

$$f(x) = (x-5)^2 - 16$$

 $\alpha = 5$ (Attention au signe!!) et $\beta = -16$.

Corrigé de l'exercice 4

$$f(x) = (x+4)^2 + 4$$

 $\alpha = -4$ (Attention au signe!! x + 4 = x - (-4)) et $\beta = 4$.

Corrigé de l'exercice 5

$$-3(x-3)^2 = -3(x^2 - 6x + 9) = -3x^2 + 18x - 27$$

$$f(x) = -3x^2 + 18x - 26 = \underline{-3x^2 + 18x - 27} + 1 = -3(x-3)^2 + 1$$

$$\beta = 1.$$

Corrigé de l'exercice 6

1)
$$5x^2 + 10x = 5(x^2 + 2x) = 5((x+1)^2 - 1)$$

2)
$$-3x^2 - 8x = -3(x^2 + \frac{8}{3}x) = \left((x + \frac{4}{3})^2 - \frac{9}{16}\right)$$

Corrigé de l'exercice 7

$$f(x) = 4(x+3)^2 + 60$$

a = 4 et $\beta = 60$.

Corrigé de l'exercice 8

$$f(x) = -3(x-2)^2 + 17$$

 $\alpha = 2(Attentionausigne!!)$ et $\beta = 17$.

Corrigé de l'exercice 9

$$f(x) = 4(x-1)^2 + 5$$

Corrigé de l'exercice 10

Non corrigé

Corrigé de l'exercice 11

Non corrigé

Corrigé de l'exercice 12

1)
$$2(x^2 + 2x) = 2((x+1)^2 - 1) = 2(x+1)^2 - 2$$

2)
$$-5x^2 + 30x = -5(x^2 - 6x) = -5((x-3)^2 - 9) = -5(x-3)^2 - 45$$

Corrigé de l'exercice 13

1) On sait que si le polynôme, sous forme développée, s'écrit $P(x) = ax^2 + bx + c$, alors sa forme canonique est de la forme

$$P(x) = a(x - \alpha)^2 + \beta,$$
-h

$$P(x) = a(x - \alpha)^{2} + \beta,$$

$$avec \alpha = \frac{-b}{2a} \text{ et } \beta = P(\alpha).$$

Avec l'énoncé : a = -1 et b = -8, on en déduit que $\alpha = -4$.

On calcule alors $\beta = P(-4)$, et on obtient au final que $\beta = 3$.

d'où,
$$P(x) = -1(x - (-4))^2 + 3$$

Au final,
$$P(x) = -(x+4)^2 + 3$$

2) On sait que si le polynôme, sous forme développée, s'écrit $P(x) = ax^2 + bx + c$, alors sa forme canonique est de la forme $P(x) = a(x - \alpha)^2 + \beta,$

Lycée Bellevue 1ère spé

avec $\alpha=\frac{-b}{2a}$ et $\beta=P(\alpha)$. Avec l'énoncé : a=-4 et b=24, on en déduit que $\alpha=3$.

On calcule alors $\beta = P(3)$, et on obtient au final que $\beta = 1$.

d'où,
$$P(x) = -4(x-3)^2 + 1$$

Au final,
$$P(x) = -4(x-3)^2 + 1$$

3) On sait que si le polynôme, sous forme développée, s'écrit $P(x) = ax^2 + bx + c$, alors sa forme canonique est de la forme $P(x) = a(x - \alpha)^2 + \beta,$

avec
$$\alpha = \frac{-b}{a}$$
 et $\beta = P(\alpha)$

avec $\alpha=\frac{-b}{2a}$ et $\beta=P(\alpha)$. Avec l'énoncé : a=1 et b=2, on en déduit que $\alpha=-1$.

On calcule alors $\beta = P(-1)$, et on obtient au final que $\beta = -5$.

d'où,
$$P(x) = 1(x - (-1))^2 + (-5)$$

Au final,
$$P(x) = (x + 1)^2 - 5$$

4) On sait que si le polynôme, sous forme développée, s'écrit $P(x) = ax^2 + bx + c$, alors sa forme canonique est de la forme

$$P(x) = a(x - \alpha)^2 + \beta,$$

avec
$$\alpha = \frac{-b}{2a}$$
 et $\beta = P(\alpha)$.

 $P(x) = a(x - \alpha)^2 + \beta,$ avec $\alpha = \frac{-b}{2a}$ et $\beta = P(\alpha)$.
Avec l'énoncé : a = -4 et b = 16, on en déduit que $\alpha = 2$.

On calcule alors $\beta = P(2)$, et on obtient au final que $\beta = -2$.

d'où,
$$P(x) = -4(x-2)^2 + (-2)$$

Au final,
$$P(x) = -4(x-2)^2 - 2$$

Corrigé de l'exercice 14

1) On sait que si le polynôme, sous forme développée, s'écrit $P(x) = ax^2 + bx + c$, alors sa forme canonique est de la forme

$$P(x) = a(x - \alpha)^2 + \beta$$

avec
$$\alpha = \frac{-b}{2a}$$
 et $\beta = P(\alpha)$

$$\begin{split} P(x) &= a(x-\alpha)^2 + \beta, \\ \text{avec } \alpha &= \frac{-b}{2a} \text{ et } \beta = P(\alpha). \\ \text{Avec l'énoncé} : a &= -1 \text{ et } b = -8, \text{ on en déduit que } \alpha = -4. \end{split}$$

On calcule alors $\beta = P(-4)$, et on obtient au final que $\beta = 3$.

d'où,
$$P(x) = -1(x - (-4))^2 + 3$$

Au final,
$$P(x) = -(x+4)^2 + 3$$

2) On sait que si le polynôme, sous forme développée, s'écrit $P(x) = ax^2 + bx + c$, alors sa forme canonique est de la forme

$$P(x) = a(x - \alpha)^2 + \beta,$$
-h

avec
$$\alpha = \frac{-b}{2a}$$
 et $\beta = P(\alpha)$.

Avec l'énoncé : a = -4 et b = 24, on en déduit que $\alpha = 3$.

On calcule alors $\beta = P(3)$, et on obtient au final que $\beta = 1$.

d'où,
$$P(x) = -4(x-3)^2 + 1$$

Au final,
$$P(x) = -4(x-3)^2 + 1$$

3) On sait que si le polynôme, sous forme développée, s'écrit $P(x) = ax^2 + bx + c$, alors sa forme canonique est de la forme

$$P(x) = a(x - \alpha)^2 + \beta,$$

avec
$$\alpha = \frac{-b}{2\pi}$$
 et $\beta = P(\alpha)$

 $P(x) = a(x - \alpha)^2 + \beta$, avec $\alpha = \frac{-b}{2a}$ et $\beta = P(\alpha)$. Avec l'énoncé : a = 1 et b = 2, on en déduit que $\alpha = -1$.

On calcule alors $\beta = P(-1)$, et on obtient au final que $\beta = -5$.

d'où,
$$P(x) = 1(x - (-1))^2 + (-5)$$

Au final,
$$P(x) = (x+1)^2 - 5$$

4) On sait que si le polynôme, sous forme développée, s'écrit $P(x) = ax^2 + bx + c$, alors sa forme canonique est de la forme

$$P(x) = a(x - \alpha)^2 + \beta,$$

$$P(x) = a(x - \alpha)^2 + \beta,$$

avec $\alpha = \frac{-b}{2a}$ et $\beta = P(\alpha)$.

Avec l'énoncé : a = -4 et b = 16, on en déduit que $\alpha = 2$.

On calcule alors $\beta = P(2)$, et on obtient au final que $\beta = -2$.

d'où,
$$P(x) = -4(x-2)^2 + (-2)$$

Au final,
$$P(x) = -4(x-2)^2 - 2$$

Corrigé de l'exercice 15

1) On veut résoudre dans \mathbb{R} l'équation $x^2 - x - 3 = 0$ (1).

On reconnaît une équation du second degré sous la forme $ax^2 + bx + c = 0$.

La consigne nous amène à commencer par écrire le polynôme du second degré sous forme canonique,

c'est à dire sous la forme : $a(x - \alpha)^2 + \beta$,

On reconnaît le début d'une identité remarquable :

$$\left(x - \frac{1}{2}\right)^2 = x^2 - x + \frac{1}{4}$$

On en déduit que :
$$x^2 - x = \left(x - \frac{1}{2}\right)^2 - \frac{1}{4}$$

Il vient alors:

$$x^{2} - x - 3 = 0$$

$$\iff \left(x - \frac{1}{2}\right)^{2} - \frac{1}{4} - 3 = 0$$

$$\iff \left(x - \frac{1}{2}\right)^{2} - \frac{13}{4} = 0$$
On reconnaît l'identité remarquable $a^{2} - b^{2}$:

avec
$$a = \left(x - \frac{1}{2}\right)$$
 et $b = \sqrt{\frac{13}{4}} = \sqrt{\frac{13}{2^2}} = \frac{\sqrt{13}}{2}$
L'équation à résoudre est équivalente à :

$$\left(x - \frac{1}{2} - \frac{\sqrt{13}}{2}\right) \left(x - \frac{1}{2} + \frac{\sqrt{13}}{2}\right) = 0$$

$$\left(x - \frac{1 + \sqrt{13}}{2}\right) \left(x - \frac{1 - \sqrt{13}}{2}\right) = 0$$
On applique la propriété du produit nul :

Soit
$$x - \frac{1 + \sqrt{13}}{2} = 0$$
, soit $x - \frac{1 - \sqrt{13}}{2} = 0$
Soit $x = \frac{1 + \sqrt{13}}{2}$, soit $x = \frac{1 - \sqrt{13}}{2}$

Soit
$$x = \frac{1 + \sqrt{13}}{2}$$
, soit $x = \frac{1 - \sqrt{13}}{2}$

$$S = \left\{ \frac{1 - \sqrt{13}}{2}; \frac{1 + \sqrt{13}}{2} \right\}$$

2) On veut résoudre dans \mathbb{R} l'équation $-3x^2 - 4x - 3 = 0$ (1).

On reconnaît une équation du second degré sous la forme $ax^2 + bx + c = 0$.

La consigne nous amène à commencer par écrire le polynôme du second degré sous forme canonique, c'est à dire sous la forme : $a(x - \alpha)^2 + \beta$,

On commence par diviser les deux membres de l'égalité par le coefficient a qui vaut ici -3.

(1)
$$\iff$$
 $x^2 + \frac{4}{2}x + 1 = 0$

(1) \iff $x^2 + \frac{4}{3}x + 1 = 0$ On reconnaît le début d'une identité remarquable :

$$\left(x + \frac{2}{3}\right)^2 = x^2 + \frac{4}{3}x + \frac{4}{9}$$

On en déduit que :
$$x^2 + \frac{4}{3}x = \left(x + \frac{2}{3}\right)^2 - \frac{4}{9}$$

Il vient alors:

$$x^{2} + \frac{4}{3}x + 1 = 0$$

$$\iff \left(x + \frac{2}{3}\right)^{2} - \frac{4}{9} + 1 = 0$$

$$\iff \left(x + \frac{2}{3}\right)^2 + \frac{5}{9} = 0$$

 \iff $\left(x+\frac{2}{3}\right)^2+\frac{5}{9}=0$ L'équation revient à ajouter deux nombres positifs, dont un non-nul. Cette somme ne peut pas être égale à zéro.

On en déduit que $S = \emptyset$

3) On veut résoudre dans \mathbb{R} l'équation $-x^2 + 5x + 3 = 0$ (1).

On reconnaît une équation du second degré sous la forme $ax^2 + bx + c = 0$.

La consigne nous amène à commencer par écrire le polynôme du second degré sous forme canonique,

c'est à dire sous la forme : $a(x - \alpha)^2 + \beta$,

On commence par diviser les deux membres de l'égalité par le coefficient a qui vaut ici -1.

(1)
$$\iff$$
 $x^2 - 5x - 3 = 0$

On reconnaît le début d'une identité remarquable :

$$\left(x - \frac{5}{2}\right)^2 = x^2 - \frac{5}{1}x + \frac{25}{4}$$

On en déduit que : $x^2 - \frac{5}{1}x = (x - \frac{5}{2})^2 - \frac{25}{4}$

Il vient alors:

$$x^{2} - 5x - 3 = 0$$

$$\iff \left(x - \frac{5}{2}\right)^{2} - \frac{25}{4} - 3 = 0$$

$$\iff \left(x - \frac{5}{2}\right)^{2} - \frac{37}{4} = 0$$
On reconnaît l'identité remarquable $a^{2} - b^{2}$:

avec
$$a = \left(x - \frac{5}{2}\right)$$
 et $b = \sqrt{\frac{37}{4}} = \sqrt{\frac{37}{2^2}} = \frac{\sqrt{37}}{2}$
L'équation à résoudre est équivalente à :

$$\left(x - \frac{5}{2} - \frac{\sqrt{37}}{2}\right) \left(x - \frac{5}{2} + \frac{\sqrt{37}}{2}\right) = 0$$
$$\left(x - \frac{5 + \sqrt{37}}{2}\right) \left(x - \frac{5 - \sqrt{37}}{2}\right) = 0$$

Soit
$$x - \frac{5 + \sqrt{37}}{2} = 0$$
, soit $x - \frac{5 - \sqrt{37}}{2} = 0$
Soit $x = \frac{5 + \sqrt{37}}{2}$, soit $x = \frac{5 - \sqrt{37}}{2}$
 $S = \left\{ \frac{5 - \sqrt{37}}{2}; \frac{5 + \sqrt{37}}{2} \right\}$

4) On veut résoudre dans \mathbb{R} l'équation $-2x^2 - 3x - 3 = 0$ (1).

On reconnaît une équation du second degré sous la forme $ax^2 + bx + c = 0$.

La consigne nous amène à commencer par écrire le polynôme du second degré sous forme canonique, c'est à dire sous la forme : $a(x - \alpha)^2 + \beta$,

On commence par diviser les deux membres de l'égalité par le coefficient a qui vaut ici -2.

(1)
$$\iff$$
 $x^2 + \frac{3}{2}x + \frac{3}{2} = 0$
On reconnaît le début d'une identité remarquable :

$$\left(x + \frac{3}{4}\right)^2 = x^2 + \frac{3}{2}x + \frac{9}{16}$$

On en déduit que : $x^2 + \frac{3}{2}x = \left(x + \frac{3}{4}\right)^2 - \frac{9}{16}$

Il vient alors:
$$x^2 + \frac{3}{2}x + \frac{3}{2} = 0$$

 $\iff \left(x + \frac{3}{4}\right)^2 - \frac{9}{16} + \frac{3}{2} = 0$
 $\iff \left(x + \frac{3}{4}\right)^2 + \frac{15}{16} = 0$

 $\iff \left(x + \frac{3}{4}\right)^2 + \frac{15}{16} = 0$ L'équation revient à ajouter deux nombres positifs, dont un non-nul. Cette somme ne peut pas être égale à zéro.

On en déduit que $S = \emptyset$

Corrigé de l'exercice 16

1) On veut résoudre dans \mathbb{R} l'équation $x^2 - x - 3 = 0$ (1).

On reconnaît une équation du second degré sous la forme $ax^2 + bx + c = 0$.

La consigne nous amène à commencer par écrire le polynôme du second degré sous forme canonique, c'est à dire sous la forme : $a(x - \alpha)^2 + \beta$,

On reconnaît le début d'une identité remarquable :

$$\left(x - \frac{1}{2}\right)^2 = x^2 - x + \frac{1}{4}$$

On en déduit que : $x^2 - x = \left(x - \frac{1}{2}\right)^2 - \frac{1}{4}$

Il vient alors:

$$x^{2} - x - 3 = 0$$

$$\left(x - \frac{1}{2}\right)^{2} - \frac{1}{4} - 3 = 0$$

$$\left(x - \frac{1}{2}\right)^{2} - \frac{13}{4} = 0$$

On reconnaît l'identité remarquable $a^2 - b^2$:

avec
$$a = \left(x - \frac{1}{2}\right)$$
 et $b = \sqrt{\frac{13}{4}} = \sqrt{\frac{13}{2^2}} = \frac{\sqrt{13}}{2}$

$$\left(x - \frac{1}{2} - \frac{\sqrt{13}}{2}\right) \left(x - \frac{1}{2} + \frac{\sqrt{13}}{2}\right) = 0$$
$$\left(x - \frac{1 + \sqrt{13}}{2}\right) \left(x - \frac{1 - \sqrt{13}}{2}\right) = 0$$

On applique la propriété du produit nul :

Soit
$$x - \frac{1 + \sqrt{13}}{2} = 0$$
, soit $x - \frac{1 - \sqrt{13}}{2} = 0$

Soit
$$x = \frac{1 + \sqrt{13}}{2}$$
, soit $x = \frac{1 - \sqrt{13}}{2}$

$$S = \left\{ \frac{1 - \sqrt{13}}{2}; \frac{1 + \sqrt{13}}{2} \right\}$$

2) On veut résoudre dans \mathbb{R} l'équation $-3x^2 - 4x - 3 = 0$ (1).

On reconnaît une équation du second degré sous la forme $ax^2 + bx + c = 0$.

La consigne nous amène à commencer par écrire le polynôme du second degré sous forme canonique,

c'est à dire sous la forme : $a(x - \alpha)^2 + \beta$,

On commence par diviser les deux membres de l'égalité par le coefficient a qui vaut ici -3.

(1)
$$\iff$$
 $x^2 + \frac{4}{3}x + 1 = 0$

(1) \iff $x^2 + \frac{4}{3}x + 1 = 0$ On reconnaît le début d'une identité remarquable :

$$\left(x + \frac{2}{3}\right)^2 = x^2 + \frac{4}{3}x + \frac{4}{9}$$

On en déduit que :
$$x^2 + \frac{4}{3}x = \left(x + \frac{2}{3}\right)^2 - \frac{4}{9}$$

Il vient alors :
$$x^2 + \frac{4}{3}x + 1 = 0$$

$$\iff \left(x + \frac{2}{3}\right)^2 - \frac{4}{9} + 1 = 0$$

$$\iff \left(x + \frac{2}{3}\right)^2 + \frac{5}{9} = 0$$

L'équation revient à ajouter deux nombres positifs, dont un non-nul. Cette somme ne peut pas être égale à zéro.

On en déduit que $S = \emptyset$

3) On veut résoudre dans \mathbb{R} l'équation $-x^2 + 5x + 3 = 0$ (1).

On reconnaît une équation du second degré sous la forme $ax^2 + bx + c = 0$.

La consigne nous amène à commencer par écrire le polynôme du second degré sous forme canonique,

c'est à dire sous la forme : $a(x - \alpha)^2 + \beta$,

On commence par diviser les deux membres de l'égalité par le coefficient a qui vaut ici -1.

$$(1) \iff x^2 - 5x - 3 = 0$$

On reconnaît le début d'une identité remarquable :

$$\left(x - \frac{5}{2}\right)^2 = x^2 - \frac{5}{1}x + \frac{25}{4}$$

On en déduit que :
$$x^2 - \frac{5}{1}x = \left(x - \frac{5}{2}\right)^2 - \frac{25}{4}$$

Il vient alors:

$$x^{2} - 5x - 3 = 0$$

$$\left(x - \frac{5}{2}\right)^{2} - \frac{25}{4} - 3 = 0$$

$$\left(5\right)^{2} = 37$$

$$\iff \left(x - \frac{5}{2}\right)^2 - \frac{37}{4} = 0$$
On reconnaît l'identité remarquable $a^2 - b^2$:

avec
$$a = \left(x - \frac{5}{2}\right)$$
 et $b = \sqrt{\frac{37}{4}} = \sqrt{\frac{37}{2^2}} = \frac{\sqrt{37}}{2}$

$$\left(x - \frac{5}{2} - \frac{\sqrt{37}}{2}\right) \left(x - \frac{5}{2} + \frac{\sqrt{37}}{2}\right) = 0$$

$$\left(x - \frac{5 + \sqrt{37}}{2}\right) \left(x - \frac{5 - \sqrt{37}}{2}\right) = 0$$

On applique la propriété du produit nul :

Soit
$$x - \frac{5 + \sqrt{37}}{2} = 0$$
, soit $x - \frac{5 - \sqrt{37}}{2} = 0$
Soit $x = \frac{5 + \sqrt{37}}{2}$, soit $x = \frac{5 - \sqrt{37}}{2}$

$$S = \left\{ \frac{5 - \sqrt{37}}{2}; \frac{5 + \sqrt{37}}{2} \right\}$$

4) On veut résoudre dans \mathbb{R} l'équation $-2x^2 - 3x - 3 = 0$ (1).

On reconnaît une équation du second degré sous la forme $ax^2 + bx + c = 0$.

La consigne nous amène à commencer par écrire le polynôme du second degré sous forme canonique, c'est à dire sous la forme : $a(x - \alpha)^2 + \beta$,

On commence par diviser les deux membres de l'égalité par le coefficient a qui vaut ici -2.

(1)
$$\iff$$
 $x^2 + \frac{3}{2}x + \frac{3}{2} = 0$

(1) \iff $x^2 + \frac{3}{2}x + \frac{3}{2} = 0$ On reconnaît le début d'une identité remarquable :

$$\left(x + \frac{3}{4}\right)^2 = x^2 + \frac{3}{2}x + \frac{9}{16}$$

On en déduit que : $x^2 + \frac{3}{2}x = \left(x + \frac{3}{4}\right)^2 - \frac{9}{16}$

Il vient alors:

$$x^2 + \frac{3}{2}x + \frac{3}{2} = 0$$

 $\iff \left(x + \frac{3}{4}\right)^2 - \frac{9}{16} + \frac{3}{2} = 0$
 $\iff \left(x + \frac{3}{4}\right)^2 + \frac{15}{16} = 0$

 $\iff \left(x + \frac{3}{4}\right)^2 + \frac{15}{16} = 0$ L'équation revient à ajouter deux nombres positifs, dont un non-nul. Cette somme ne peut pas être égale à zéro. On en déduit que $S = \emptyset$