
MathALEA

Annales de DNB

PROGRAMMES DE CALCULS

La figure ci-dessous donne un schéma d'un programme de calcul.

- 1. Si le nombre de départ est 1, montrer que le résultat obtenu est -15.
- **2.** Si on choisit un nombre quelconque *x* comme nombre de départ, parmi les expressions suivantes, quelle est celle qui donne le résultat obtenu par le programme de calcul? Justifier.

$$A = (x^2 - 5) \times (3x + 2)$$

$$B = (2x - 5) \times (3x + 2)$$

$$C = 2x - 5 \times 3x + 2$$

3. Lily prétend que l'expression $D = (3x+2)^2 - (x+7)(3x+2)$ donne les mêmes résultats que l'expression B pour toutes les valeurs de x. L'affirmation de Lily est-elle vraie? Justifier.

Nina et Claire ont chacune un programme de calcul.

Annales de DNB

PROGRAMMES DE CALCULS

Programme de Nina

Choisir un nombre de départ

Soustraire 1.

Multiplier le résultat par -2

Ajouter 2.

Programme de Claire

Choisir un nombre de départ

Multiplier ce nombre par $-\frac{1}{2}$

Ajouter 1 au résultat

- 1. Montrer que si les deux filles choisissent 1 comme nombre de départ, Nina obtiendra un résultat final 4 fois plus grand que celui de Claire.
- 2. Quel nombre de départ Nina doit-elle choisir pour obtenir 0 à la fin?
- **3.** Nina dit à Claire : «Si on choisit le même nombre de départ, mon résultat sera toujours quatre fois plus grand que le tien».

 A-t-elle raison?

Voici un programme de calcul :

- Choisir un nombre entier positif
- Ajouter 1
- Calculer le carré du résultat obtenu
- Enlever le carré du nombre de départ.
- 1. On applique ce programme de calcul au nombre 3. Montrer qu'on obtient 7.
- 2. Voici deux affirmations:

Affirmation nº 1 : «Le chiffre des unités du résultat obtenu est 7 ».

Affirmation $n^{\circ}\,2$: «Chaque résultat peut s'obtenir en ajoutant le nombre entier de départ et le nombre entier qui le suit ».

- a. Vérifier que ces deux affirmations sont vraies pour les nombres 8 et 13.
- **b.** Pour chacune de ces deux affirmations, expliquer si elle est vraie ou fausse quel que soit le nombre choisi au départ.

Annales de DNB

PROGRAMMES DE CALCULS

Corrections •

- 1. On obtient à gauche : $1 \rightarrow 2 \rightarrow -3$ et à droite : $1 \rightarrow 3 \rightarrow 5$, donc à la fin $-3 \times 5 = -15$.
- **2.** On obtient à gauche : $x \rightarrow 2x \rightarrow 2x 5$ et à droite : $x \rightarrow 3x \rightarrow 3x + 2$, donc à la fin (2x-5)(3x+2) : c'est B.
- **3.** On a D = (3x+2)[(3x+2)-(x+7)] = (3x+2)(3x+2-x-7) = (3x+2)(2x-5) = 2x-5)(3x+2) = B: Lily a raison.

MathALEA

Annales de DNB

PROGRAMMES DE CALCULS

- 1. Nina obtient successivement : $1 \rightarrow 1 1 = 0 \rightarrow 0 \times (-2) = 0 \rightarrow 2$;
 - Claire obtient successivement : $1 \to 1 \times \left(-\frac{1}{2}\right) = -\frac{1}{2} \to -\frac{1}{2} + 1 = \frac{1}{2}$. Or $2 = 4 \times \left(\frac{1}{2}\right)$: le résultat de Nina est quatre fois plus grand que elui de Claire.
- **2.** En partant de 0 et en faisant les opérations inverses du programme on obtient : $0 \leftarrow 0 2 = -2 \leftarrow -2 \times \left(-\frac{1}{2}\right) = 1 \leftarrow 1 + 1 = 2$.

En partant de 2 Nina obtiendra 0.

- **3.** En partant de x quelconque Nina obtient successivement : $x \to x 1 \to -2(x 1) = -2x + 2 \to -2x + 2 + 2 = 4 2x$.
 - En partant de x quelconque Claire obtient successivement : $x \to x \times \left(-\frac{1}{2}\right) \to 1 \frac{x}{2}$.

Or
$$4\left(1-\frac{x}{2}\right) = 4-2x$$
. Nina a raison.

MathALEA

Annales de DNB

PROGRAMMES DE CALCULS

- 1. On a successivement : $3 \rightarrow 3 + 1 = 4 \rightarrow 4^2 = 16 \rightarrow 16 3^2 = 16 9 = 7$.
- **2. a.** Avec 8 on obtient : $8 \rightarrow 9 \rightarrow 81 \rightarrow 81 64 = 17$. Le chiffre des unités du résultat obtenu est 7.

D'autre part 8 + (8 + 1) = 8 + 9 = 17. le résultat s'obtient en ajoutant le nombre entier de départ et le nombre entier qui le suit.

• Avec 13 on obtient $13 \rightarrow 14 \rightarrow 196 \rightarrow 196 - 169 = 27$. Le chiffre des unités du résultat obtenu est 7.

D'autre part 13+(13+1)=13+14=27. le résultat s'obtient en ajoutant le nombre entier de départ et le nombre entier qui le suit.

b. Pour l'affirmation 1, en partant de 4, on obtient :

 $4 \rightarrow 5 \rightarrow 25 \rightarrow 25 - 16 = 9$. Le chiffre des unités n'est pas 7. l'affirmation 1 n'est pas vraie quel que soit le nombre de départ.

Pour l'affirmation 2. Soit x le nombre de départ, on obtient :

 $x \to (x+1) \to (x+1)^2 \to (x+1)^2 - x^2 = x^2 + 2x + 1 - x^2 = 2x + 1 = x + x + 1 = x + (x+1)$: le résultat s'obtient en ajoutant le nombre entier de départ et le nombre entier qui le suit.

L'affirmation 2 est vraie quel que soit le nombre choisi au départ.