Lycée Bellevue T^{le} Complémentaire

ÉTUDE DE LA FONCTION LOGARITHME NÉPÉRIEN

1 DÉRIVÉE (VIDÉO 1)

La fonction logarithme népérien est dérivable sur]0; $+\infty$ [et pour tout réel x > 0, $\ln'(x) = \frac{1}{x}$.

DÉMONSTRATION

- **On admet** que la fonction ln est dérivable sur $]0; +\infty[$.
- Soit *f* la fonction définie sur]0; $+\infty$ [par $f(x) = e^{\ln x}$.

f est dérivable sur]0; $+\infty$ [et pour tout réel x > 0, $f'(x) = \ln'(x) \times e^{\ln x} = \ln'(x) \times x$.

Or pour tout réel x > 0, f(x) = x d'où f'(x) = 1

Ainsi pour tout réel x > 0, $\ln'(x) \times x = 1$ donc $\ln'(x) = \frac{1}{x}$.

2 VARIATION (VIDÉO 2)

La fonction ln est dérivable donc continue sur $]0; +\infty[$.

La fonction logarithme népérien est continue et strictement croissante sur]0; $+\infty$ [.

Comme ln 1 = 0, on en déduit les propriétés suivantes :

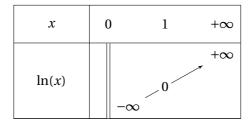
Pour tout réel *x* strictement positif :

 $\ln x = 0$ si, et seulement si, x = 1

 $\ln x > 0$ si, et seulement si, x > 1

 $\ln x < 0$ si, et seulement si, 0 < x < 1

D'où le tableau de variation de la fonction ln :



On admet que:

- $\lim_{\substack{x \to 0 \\ x > 0}} \ln(x) = -\infty$
- $\lim_{x \to +\infty} \ln(x) = +\infty$

CONSÉQUENCE

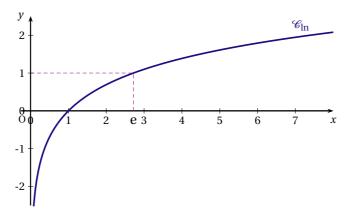
Comme la fonction logarithme népérien est continue, strictement croissante et que pour tout réel x > 0, $\ln x \in \mathbb{R}$ alors, d'après le théorème de la valeur intermédiaire :

Pour tout réel k, l'équation $\ln x = k$ admet dans l'intervalle $]0; +\infty[$ une unique solution $x = e^k$.

Lycée Bellevue T^{le} Complémentaire

3 COURBE REPRÉSENTATIVE

Notons \mathscr{C}_{ln} la courbe représentative de de la fonction logarithme népérien.



4 FONCTION DU TYPE $\ln u$:

DÉRIVÉE :

Soit u une fonction positive sur un intervalle I, la fonction définie sur I par $x\mapsto \ln \left(u(x)\right)$ admet pour dérivée : $\left(\ln u\right)'=\frac{u'}{u}$

EXEMPLE:

$$\left[\ln\left(x^2+1\right)\right]' = \frac{2x}{x^2+1}$$