Correction DM Géométrie

EXERCICE 1

1. On calcule séparément les carrés des côtés :

$$AE^2 = 8^2 = 64$$
; $EF^2 = 6^2 = 36$ et $AE^2 = 10^2 = 100$.

On observe que : $AE^2 + EF^2 = AE^2$.

Donc d'après la réciproque du théorème de Pythagore, le triangle AEF est rectangle en E.

2. On sait que dans le triangle rectangle en E :

$$\cos \widehat{EAF} = \frac{AE}{AF} = \frac{8}{10} = 0.8.$$

Grâce à la calculatrice on en déduit que $\widehat{EAF} \approx 36, 8$, soit 37° au degré près.

3. On calcule séparément les rapports de Thalès :

$$\frac{AE}{AR} = \frac{8}{12} = \frac{2}{3} \text{ et } \frac{AF}{AT} = \frac{12}{14} = \frac{6}{7}$$
Les produits en croix $2 \times 7 = 14$ et $3 \times 6 = 18$ ne sont pas égaux.

D'après la contraposée du théorème de Thalès, les droites ne sont pas parallèles.

EXERCICE 2

1. Le triangle CBD est rectangle en B.

Le théorème de Pythagore s'écrit :

$$CD^2 = DB^2 + CB^2$$

$$DB^2 = CD^2 - CB^2$$

$$DB^2 = 8.5^2 - 7.5^2$$

$$DB^2 = 16$$

$$DB = 4 (cm)$$
.

2. Deux triangles semblables ont les mesures de leurs côtés proportionnelles. Or
$$\frac{BF}{BC} = \frac{6}{7,5} = 0,8$$
, $\frac{EF}{BD} = \frac{3,2}{4} = 0,8$ et $\frac{BE}{CD} = \frac{6,8}{8,5} = 0,8$ Par conséquent les triangles CBD et BFE sont semblables.

3. Vérifions que le triangle BFE est rectangle :

On calcule séparément les carrés des côtés :

• BE² = 6.8^2 = 46.24, BF² = 6^2 = 36 et FE² : 3.2^2 = 10.24. On observe que : BF² + FE² = 36 + 10.24 = 46.24.

Donc $BE^2 = BF^2 + FE^2$

et par la réciproque de Pythagore le triangle BEF est rectangle en F.

- Autre méthode plus rapide : les triangles CBD et BFE étant semblables, on a CBD = BFE = 90° puisque le triangle CBD est rectangle en B.
- **4.** Calculons l'angle \widehat{DCB} par son cosinus dans le triangle rectangle DCB:

$$\cos\widehat{DCB} = \frac{CB}{CD} = \frac{7.5}{8.5} = \frac{75}{85} = \frac{15}{17}$$
. La calculatrice donne $\widehat{DCB} \approx 28^{\circ}$.

Or: $28 + 61 = 89 \neq 90$: l'angle \widehat{ACD} n'est pas droit.

EXERCICE 3

1. La Tour Eiffel est en principe verticale. le triangle ABH est donc rectangle en B et dans ce triangle on a :

$$\tan \widehat{\text{HAB}} = \frac{324}{600} = \frac{6 \times 54}{6 \times 100} = \frac{54}{100} = 0,54.$$

La calculatrice donne $\widehat{HAB} \approx 28,369$, soit 28°au degré près.

2. Leila étant en position verticale le segment la représentant est parallèle au segment [BH].

On peut donc d'après la propriété de Thalès :

$$\frac{\text{hauteur de Leila}}{\frac{\text{BH}}{\text{soit}} \frac{1,70}{324} = \frac{\text{AL}}{600}} = \frac{\text{AL}}{\text{AB}}$$

on a donc : AL = $600 \times \frac{1,70}{324} \approx 3,148$ (m) soit 3,15 m au centimètre près.