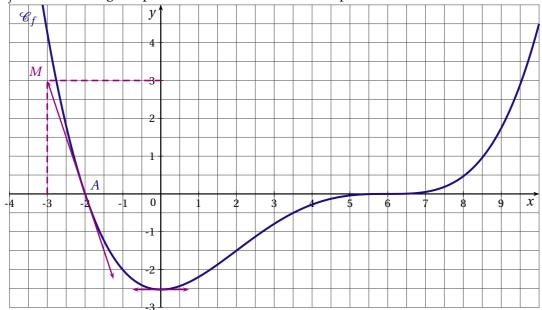
Lycée Bellevue 1<sup>ère</sup> ES-L

## **DEVOIR DE MATHÉMATIQUES**

Exercice 1 5 points


Soit f une fonction définie et dérivable sur  $\mathbb{R}$ . On note f' la dérivée de la fonction f.

On donne ci-dessous la courbe  $\mathscr{C}_f$  représentant la fonction f.

La courbe  $\mathcal{C}_f$  coupe l'axe des abscisses au point A(-2;0).

La tangente à la courbe au point A passe par le point M(-3;3).

La courbe  $\mathscr{C}_f$  admet une tangente parallèle à l'axe des abscisses au point d'abscisse 0.



- 1. Déterminer f'(0).
- 2. Déterminer une équation de la tangente à la courbe  $\mathcal{C}_f$  au point A. En déduire la valeur de f'(-2).
- 3. Peut-on en affirmer que f'(-1) > f'(1)?

Exercice 2 5 points

Soit f la fonction définie sur  $\mathbb R$  par

$$f(x) = x^3 - \frac{3}{2}x^2 - 18x - 3$$

On appelle  $\mathscr C$  sa courbe représentative.

- 1. Calculer f'(x)
- 2. En déduire les variations de f sur  $\mathbb R$
- 3. Déterminer une équation de tangente à  $\mathscr C$  au point d'abscisse 0.

Exercice 3 3 points

On considère la suite  $(u_n)$  définie par son premier terme  $u_0 = 1$  puis par la relation, pour tout entier naturel n,

$$u_{n+1} = \frac{1}{2}u_n - \frac{3}{2}$$

- 1. Calculer  $u_1$  et  $u_2$ .
- 2. A la calculatrice, et sans justifier, déterminer  $u_{10}$

Lycée Bellevue 1<sup>ère</sup> ES-L

Exercice 4 2 points

Quelle est la valeur de la variable n en fin de programme?

$$U \leftarrow 2$$
  
 $n \leftarrow 0$   
Tant que  $U < 8$   
 $U \leftarrow \frac{3}{2} \times U$   
 $n \leftarrow n + 1$   
Fin de Tant que

Exercice 5 5 points

On considère la suite  $(u_n)$  définie pour tout entier naturel n par

$$u_n = 3n - 2$$

et la suite  $(v_n)$  définie pour tout entier naturel n par

$$v_n = n^2 - 1$$

Pour chacune de ces deux suites, déterminer, en justifiant, si elle est arithmétiques ou non. Si oui, en donner son expression sous forme d'une relation de récurrence.