Correction du devoir maison n°1

Exercice $n^{\circ}1$:

1°) $y = x^2 - 4x + 5 = ax^2 + bx + c$ avec a = 1, b = -4 et c = 5. On utilise les formules du cours qui permettent de calculer $\alpha = \frac{-b}{2a}$ et $\beta = f(\alpha)$, et on écrit la forme canonique.

 $x^2 - 4x + 5 = (x - 2)^2 + 1$. Ainsi, les coordonnées du sommet S sont $(\alpha; \beta)$ soit (2; 1).

2°) De la même façon que dans la question 1°), on montre que $f(x) = 2x^2 - 12x + 18 = 2(x - 3)^2$. Ainsi, comme a = 2 est positif et α = 3, f est décroissante sur $]-\infty$; 3] et croissante sur $[3;+\infty[$.

$$3^{\circ}$$
) $2x^2 + 16x + 14 = ax^2 + bx + c$ avec $a = 2$, $b = 16$ et $c = 14$.

$$\Delta = b^2 - 4ac = 16^2 - 4 \times 2 \times 14 = 144$$
.

 $\Delta > 0$, le polynôme admet deux racines distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-16 - \sqrt{144}}{2 \times 2} = -7 \text{ et } x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-16 + \sqrt{144}}{2 \times 2} = -1$$

$$S = \{-7; -1\}$$

$$4^{\circ}) \quad Q = -x^2 - 12x + 28 = ax^2 + bx + c \text{ avec } a = -1, b = -12 \text{ et } c = 28.$$

4°)
$$Q = -x^2 - 12x + 28 = ax^2 + bx + c$$
 avec $a = -1$, $b = -12$ et $c = 28$.

$$\Delta = b^2 - 4ac = (-12)^2 - 4 \times (-1) \times 28 = 256.$$

 $\Delta > 0$, le polynôme admet deux racines distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{12 - \sqrt{256}}{2 \times (-1)} = 2 \text{ et } x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{12 + \sqrt{256}}{2 \times (-1)} = -14$$

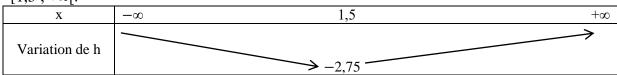
Ainsi,
$$Q = a(x - x_1)(x - x_2) = -(x - 2)(x + 14)$$

5°)
$$h(x) = -x^2 + 3x - 5 = ax^2 + bx + c$$
 avec $a = -1$, $b = 3$ et $c = -5$.

On calcule $\alpha = \frac{-b}{2a}$ et $\beta = f(\alpha)$, ou on écrit la forme canonique.

Ainsi,
$$-x^2 + 3x - 5 = -(x - 1,5)^2 - 2,75$$

Comme a = -1 est négatif et $\alpha = 1,5$, h est croissante sur $]-\infty$; 1,5] et décroissante sur $[1,5;+\infty[$.



Exercice $n^{\circ}2$:

- 1°) $g(x) = 2x^2 + 16x + 14$. Pour x = 0, g(0) = 14.
- 2°) $g(x) = 2(x+4)^2 18 = 2(x-(-4))^2 18$. S(-4;-18)
- 3°) g(x) = 2(x + 1)(x + 7). x = -1 ou x = -7.
- 4°) g(x) = 2(x + 4)² 18. Comme « a = 2 » est positif, $\alpha = -4$, g est décroissante] $-\infty$: -4] puis croissante sur $[-4:+\infty[$

croissaine sur [-	ւ . ՝∞[.		
X	∞	-4	$+\infty$
Variations de g		→ -18 —	→

5°) g(x) = 2(x+1)(x+7). « a = 2 » est positif et les racines sont -7 et -1. g(x) a le signe de « a > 0» à l'extérieur des racines.

X	-8	-7		-1		$+\infty$
Signe de g(x)	+	ф	_	ф	+	

Exercice $n^{\circ}3$:

Les abscisses des points d'intersection de l'axe des abscisses et de la courbe représentative de la fonction f sont les solutions de f(x) = 0. $f(x) = ax^2 + bx + c$ avec a = 5, b = 2 et c = -7.

$$\Delta = 2^2 - 4 \times 5 \times (-7) = 144$$
. $\Delta > 0$, le polynôme admet deux racines distinctes

$$x_1 = \frac{-2 - \sqrt{144}}{2 \times 5} = -1,4 \text{ et } x_2 = \frac{-2 + \sqrt{144}}{2 \times 5} = 1.$$

La représentation de f recoupe l'axe des abscisses aux points d'abscisse -1,4 et 1.

Exercice $n^{\circ}4$:

Les fonctions ci-dessous sont de la forme $ax^2 + bx + c$, on peut donc calculer $\alpha = -\frac{b}{2a}$ et

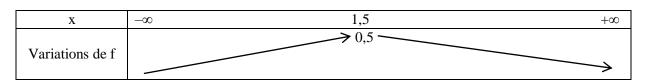
 $\beta = f(\alpha)$. Ainsi, on les écrit sous la forme canonique $a(x - \alpha)^2 + \beta$ et on détermine l'extremum « β » en précisant s'il s'agit d'un maximum ou un minimum à l'aide des variations.

 2°) $g(x) = -2x^2 + 8x - 1 = -2(x - 2)^2 + 7$. Le sommet de la parabole a pour coordonnées (2;7). a < 0, h est croissante sur $]-\infty;2]$ puis décroissante sur $[2;+\infty[$. Le maximum de g sur R est 7, et ce maximum est atteint pour x = 2.

Exercice $n^{\circ}5$:

1°) $f(x) = ax^2 + bx + c$ avec a = -2, b = 6 et c = -4. On détermine la forme canonique $a(x - \alpha)^2 + \beta$ avec $\alpha = -\frac{b}{2a}$ et $\beta = f(\alpha)$. $f(x) = -2(x - 1,5)^2 + 0,5$.

Comme « a = -2 » est négatif, f est croissante sur $]-\infty$; 1,5] et décroissante sur $[1,5;+\infty[$



2°) On calcule les racines du polynôme du second degré $-2x^2 + 6x - 4$. $\Delta = 6^2 - 4 \times (-2) \times (-4) = 4$, le polynôme admet deux racines distinctes $x_1 = 1$ et $x_2 = 2$ et $f(x) = a(x - x_1)$ $(x - x_2) = -2(x - 1)(x - 2)$

3°) D'après 1°) le sommet de la parabole a pour coordonnées (1,5;0,5). On peut donc affirmer que la droite d'équation x = 1,5 (parallèle à l'axe des ordonnées passant par « S ») est un axe de symétrie pour la parabole qui représente f.

 4°) $f(x) = -2x^2 + 6x - 4 = -1$ équivaut à $-2x^2 + 6x - 3 = 0$. On cherche donc les racines du polynôme du second degré $P = -2x^2 + 6x - 3$ avec a = -2, b = 6 et c = -3.

 $\Delta = b^2 - 4ac = 12, \ \Delta > 0, \ P \ admet \ donc \ deux \ racines \ distinctes \ x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-6 - \sqrt{12}}{2 \times -2} = \frac{-6 - 2\sqrt{3}}{-4} = \frac{-3 - \sqrt{3}}{-2} = \frac{3 + \sqrt{3}}{2} \ et \ x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-6 + \sqrt{12}}{2 \times -2} = \frac{-6 + 2\sqrt{3}}{-4} = \frac{-3 + \sqrt{3}}{-2} = \frac{3 - \sqrt{3}}{2}.$ Les solutions de l'équation f(x) = -1 sont $x_1 = \frac{3 + \sqrt{3}}{2}$ et $x_2 = \frac{3 - \sqrt{3}}{2}$.

5°) $f(x) = -2x^2 + 6x - 4$. $f(x) \le -3$ équivaut à $-2x^2 + 6x - 4 \le -3$ soit $-2x^2 + 6x - 1 \le 0$. On cherche donc le signe du polynôme du second degré $Q = -2x^2 + 6x - 1$ avec a = -2, b = 6 et c = -1.

 $\Delta = 28. \text{ Comme } \Delta > 0, \text{ Q admet donc deux racines distinctes } x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-6 - \sqrt{28}}{2 \times -2} = \frac{-6 - 2\sqrt{7}}{-4} = \frac{-3 - \sqrt{7}}{-2} = \frac{3 + \sqrt{7}}{2} \text{ et } x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-6 + \sqrt{28}}{2 \times -2} = \frac{-6 + 2\sqrt{7}}{-4} = \frac{-3 + \sqrt{7}}{-2} = \frac{3 - \sqrt{7}}{2}. \text{ Q a}$

le signe de « a = -2 » à l'extérieur des racines.

Х	-∞	$\frac{3-\sqrt{7}}{2}$		$\frac{3+\sqrt{7}}{2}$		+∞
Signe de Q	_	0	+	0	-	

Conclusion: Les solutions de $f(x) \le -3$ sont dans $]-\infty$; $\frac{3-\sqrt{7}}{2}] \cup [\frac{3+\sqrt{7}}{2}]$; $+\infty[$.

Exercice n°6:

1°) d(x) = mx + p, avec m = -1.5 et p = 43, donc d est une fonction affine. Comme « m = -1.5 », la fonction d est décroissante sur \mathbb{R} .

- 2°) a) Pour x = 12, d(x) = d(12) = -1,5×12 + 43 = 25. Pour un prix de repas de 12€, la demande est de 25 repas.
- b) $f(x) = f(12) = -\frac{1}{12} \cdot 12^2 + \frac{13}{3} \cdot 12 29 = 11$. Pour un prix de repas de $12 \in$, l'offre est de 11 repas. Le restaurateur ne pourra donc pas servir tous ces clients.
- c) Pour x = 22, $d(x) = d(22) = -1.5 \times 22 + 43 = 10$ et
- $f(x) = f(22) = -\frac{1}{12}22^2 + \frac{13}{3}22 29 = 26$. Pour un prix de repas de 22 ϵ , la demande est de 10 repas et l'offre est de 26 repas. Le restaurateur ne pourra donc pas vendre tous ces repas.
- 3°) Comme la fonction « d » est affine, elle est représentée par une droite (un segment sur

[8; 22]). De plus,
$$f(x) = ax^2 + bx + c$$
 avec $a = -\frac{1}{12}$, $b = \frac{13}{3}$ et $\alpha = -\frac{\frac{13}{3}}{2 \times -\frac{1}{12}} = 26$.

Comme « a » est négatif, f est croissante sur $]-\infty$; 26] donc sur [8; 22].

- 4°) Le prix d'équilibre est l'abscisse du point d'intersection entre les courbes représentatives de « d » et de « f », soit 16 repas. On peut dire que pour un prix de $16 \in$ par repas l'offre et la demande sont égales.
- 5°) On résout d(x) = f(x), soit -1,5x + 43 = $-\frac{1}{12}x^2 + \frac{13}{3}x 29$ qui équivaut à $\frac{1}{12}x^2 (1,5 + \frac{13}{3})x + 72 = 0$ et $\frac{1}{12}x^2 \frac{35}{6}x + 72 = 0$.

On recherche donc les racines du polynôme de second degré $\frac{1}{12}x^2 - \frac{35}{6}x + 72 = ax^2 + bx + c$ avec $a = \frac{1}{12}$, $b = -\frac{35}{6}$ et c = 72. $\Delta = (-\frac{35}{6})^2 - 4 \times \frac{1}{12} \times 72 = \frac{361}{36}$

 $\Delta > 0$, le polynôme admet deux racines distinctes

$$x_1 = \frac{-(-\frac{35}{6}) - \sqrt{\frac{361}{36}}}{2 \times \frac{1}{12}} = 16 \text{ et } x_2 = \frac{-\left(-\frac{35}{6}\right) + \sqrt{\frac{361}{36}}}{2 \times \frac{1}{12}} = 54 \text{ (n'appartient pas à [8:22])}$$

<u>Conclusion</u>: Sur [8; 22], le polynôme s'annule uniquement pour x = 16. On retrouve que le point d'équilibre est atteint pour le prix de 16 € par repas.

6°) On résout l'inéquation $f(x) \ge d(x)$, soit $-\frac{1}{12}x^2 + \frac{13}{3}x - 29 \ge -1,5x + 43$ qui équivaut à $\frac{1}{12}x^2 - \frac{35}{6}x + 72 \le 0$. On retrouve le polynôme de la question 5°) dont les racines sont 16 et 54. Comme « $a = \frac{1}{12}$ » est positif, le polynôme est positif à l'extérieur des racines et on obtient le tableau de signes suivant :

X	$-\infty$	16	54	+∞
Signes du polynôme	+	0	- 0	+

Conclusion : Sur l'intervalle [8 ; 22], $f(x) \ge d(x)$ pour x dans l'intervalle [16 ; 22]. Cela signifie que pour un prix de repas compris entre 16 et 22 \in , l'offre est supérieure à la demande.