Résoudre dans IR :
$$\frac{3x^2-4x+1}{2-3x} < 0$$

• Recherche du domaine de définition de la fonction :

On résout 2-3x=0 d'où $x=\frac{2}{3}$ qui est la valeur interdite de la fonction. D'où $D=\mathbb{R}\setminus\left\{\frac{2}{3}\right\}$

- Étude du signe du numérateur : $3x^2-4x+1$ On reconnaît une expression du second degré sous forme développée. Pour déterminer son signe, on calcule son discriminant : $\Delta = (-4)^2 4 \times 3 \times 1 = 4 > 0$ L'expression admet donc deux racines : $x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{4+2}{6} = 1$ et $x_2 = \frac{-b \sqrt{\Delta}}{2a} = \frac{4-2}{6} = \frac{1}{3}$ On sait que cette expression sera du signe de a, donc positive, à l'extérieure des racines, et négative à l'intérieure, donc sur $\frac{1}{3}$; 1[
- Étude du signe du dénominateur: 2-3xOn reconnaît une expression du premier degré, de la forme ax+b, avec a=-3 et b=2On a déjà trouvé la racine de cette expression : $\frac{2}{3}$

L'expression sera du signe de a , donc négative, à droite de cette racine, donc sur $]\frac{2}{3}$; $+\infty[$.

• Résumé de ces informations dans un tableau de signes :

X	$-\infty$	<u>1</u> 3		<u>2</u> 3		1	+∞
$3x^2-4x+1$	+	0	-		-	0 +	
2-3x	+		+	0	-	-	
f(x)	+	0	-		+	0 -	

D'où
$$S = \frac{1}{3}; \frac{2}{3}[\cup]1; +\infty[$$