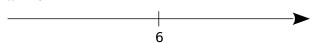
PLAN DE TRAVAIL INÉQUATIONS 1

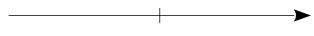

1 Traduis chaque inégalité par une phrase. a. $x \ge -2$	b. L'inégalité $3x - \frac{1}{2} \ge x + 1$ est-elle vérifiée pour $x = \frac{3}{4}$?												
Le nombre x est													
b. 3 > <i>x</i>													
c. $x \le -0.8$													
d. $\frac{1}{4}x < 3$	4 Soit x un nombre tel que $x < 5$.												
	a. Quelle inégalité vérifie $x + 3$?												
	$x + \dots < 5 + \dots $ donc $x + 3 < \dots$												
2 Parmi les nombres 4 et $-2,5$, indique lesquels sont solutions de chaque inéquation.	b. Quelle inégalité vérifie $x-3$?												
a. $4x \ge -10$													
	c. Quelle inégalité vérifie $3x$?												
	d. Quelle inégalité vérifie $-2x$?												
b. $4 - 3x < 13$	e. Quelle inégalité vérifie $\frac{3}{5}x$?												
	5 Sachant que $a \ge -12$, complète avec un symbole d'inégalité et un nombre.												
7 Tastan una inémalité	a. $a + 20 \ge \dots$ e. $\frac{a}{3}$												
3 Tester une inégalité a. L'inégalité $5x - 3 > 1 + 3x$ est-elle vérifiée	b. 2 <i>a</i> 1												
pour $x = 0$?	c. $-3a$ f. $\frac{1}{2}a$												
	d. 1,5a g. $-\frac{1}{4}a$												
	' '												
	1 La calculatrice de Mathieu est tombée en												

PLAN DE TRAVAIL INÉQUATIONS 2

panne et le professeur demande un encadrement de certaines données. Aide Mathieu.	
a. Encadre le périmètre $\mathcal T$ d'un carré dont le côté c est compris entre 3,2 et 3,3 cm.	
b. Donne un encadrement à 10^{-2} près du nombre -2.5π sachant que $\pi\approx 3.1416$.	$\mathbf{d.} - 5x \geqslant -15$
$3,141 < \pi <$	
c. Donne un encadrement à 10 ⁻² près du nombre	3 Résous chaque inéquation
$-5-3\sqrt{3}$ sachant que $\sqrt{3}\approx 1,7321$.	a. $x - 4 > 12$
	b. $-4x \ge 48$
d. Le nombre d'Euler, noté e , a pour valeur approchée 2,7182. Donne un encadrement de $8-3e$ à 10^{-2} près.	c. - x ≤ - 3
	4 Résous chaque inéquation. a. $5x - 3 \le -4x$
2 Résous chaque inéquation.	
a. x + 4 < - 7	b. $-3x + 15 \ge -72 - 2x$
b. $3x < -2$	
	c. $14x - 25 \le 17x + 50$
c. $-2x < 8$	5 Représente graphiquement les inégalités

suivantes. Colorie les solutions.

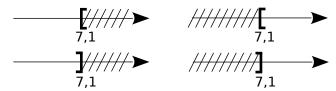
b.
$$y > -1.4$$

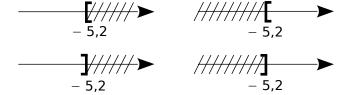


c.
$$z \ge 7.8$$

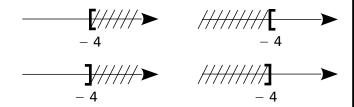
6 Représente graphiquement les solutions de chaque inégalité. Hachure ce qui est solution.

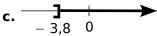
a.
$$x \ge -3.6$$


b.
$$t < -4.6$$



7 Pour chaque inégalité, entoure le graphique où sont hachurés les nombres qui sont solutions.


a. $x \ge 7,1$


b.
$$u > -5.2$$

c.
$$v \leq -4$$

8 Écris des inégalités dont les solutions sont représentées ci-dessous :

a.	 	C.	

9 Résous les inéquations suivantes et trace une représentation graphique de leurs solutions.

a.
$$5(x-2) \le 4x-2$$

								 •																		

b.
$$-6(2x + 2) \ge 3x - 27$$

c.
$$7x + 4 \le 3x - 2$$
.

d.
$$2x - 5 < 3x + 7$$
.

1 Un parc de loisirs propose plusieurs tarifs.

Formule A : 7 € par entrée

Formule B : un abonnement annuel de $35 \in \text{puis}$

4,50 € par entrée

- **a.** À partir de combien d'entrées la formule B est-elle plus avantageuse que la formule A ?
- **b.** Ce parc propose aussi un troisième tarif. Formule C : un abonnement annuel de 143 € pour un nombre illimité d'entrées

À partir de combien d'entrées la formule C est-elle plus avantageuse que la formule B ?

1 Un parc de loisirs propose plusieurs tarifs.

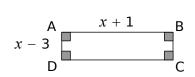
Formule A : 7 € par entrée

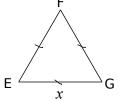
Formule B : un abonnement annuel de 35 € puis 4,50 € par entrée

- **a.** À partir de combien d'entrées la formule B est-elle plus avantageuse que la formule A ?
- **b.** Ce parc propose aussi un troisième tarif. Formule C : un abonnement annuel de 143 € pour un nombre illimité d'entrées

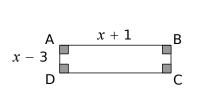
À partir de combien d'entrées la formule C est-elle plus avantageuse que la formule B ?

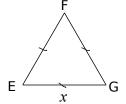
1 Un parc de loisirs propose plusieurs tarifs.

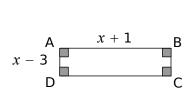

Formule A : 7 € par entrée

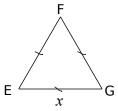

Formule B : un abonnement annuel de 35 € puis 4,50 € par entrée

- **a.** À partir de combien d'entrées la formule B est-elle plus avantageuse que la formule A ?
- **b.** Ce parc propose aussi un troisième tarif. Formule C : un abonnement annuel de 143 € pour un nombre illimité d'entrées


À partir de combien d'entrées la formule C est-elle plus avantageuse que la formule B ?


2 ABCD est un rectangle et EFG est un triangle équilatéral. x désigne un nombre strictement supérieur à 3.




- **a.** Exprime le périmètre de ABCD et le périmètre de EFG en fonction de x.
- **b.** Détermine les valeurs de x pour lesquelles le périmètre du rectangle est strictement inférieur à celui du triangle.
- **2**. ABCD est un rectangle et EFG est un triangle équilatéral. x désigne un nombre strictement supérieur à 3.

- **c.** Exprime le périmètre de ABCD et le périmètre de EFG en fonction de x.
- **d.** Détermine les valeurs de x pour lesquelles le périmètre du rectangle est strictement inférieur à celui du triangle.
- **2.** ABCD est un rectangle et EFG est un triangle équilatéral. x désigne un nombre strictement supérieur à 3.

- **e.** Exprime le périmètre de ABCD et le périmètre de EFG en fonction de x.
- **f.** Détermine les valeurs de x pour lesquelles le périmètre du rectangle est strictement inférieur à celui du triangle.